Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.469
1.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727160

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
3.
J Hazard Mater ; 471: 134356, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643579

Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) caused toxicity on Caenorhabditis elegans, including reproductive toxicity. However, the underlying mechanisms for this induced reproductive toxicity by 6-PPDQ remain largely unclear. We examined possible association of ferroptosis activation with reproductive toxicity of 6-PPDQ. In 1-100 µg/L 6-PPDQ exposed nematodes, Fe2+ content was increased, which was accompanied with enhanced lipid peroxidation, increased malonydialdehyde (MDA) content, and decreased L-glutathione (GSH) content. Exposure to 1-100 µg/L 6-PPDQ decreased expressions of ftn-1 encoding ferritin, ads-1 encoding AGPS, and gpx-6 encoding GPX4 and increased expression of bli-3 encoding dual oxidase. After 6-PPDQ exposure, RNAi of ftn-1 decreased ads-1 and gpx-6 expressions and increased bli-3 expression. RNAi of ftn-1, ads-1, and gpx-6 strengthened alterations in ferroptosis related indicators, and RNAi of bli-3 suppressed changes of ferroptosis related indicators in 6-PPDQ exposed nematodes. Meanwhile, RNAi of ftn-1, ads-1, and gpx-6 induced susceptibility, and RNAi of bli-3 caused resistance to 6-PPDQ reproductive toxicity. Moreover, expressions of DNA damage checkpoint genes (clk-2, mrt-2, and hus-1) could be increased by RNAi of ftn-1, ads-1, and gpx-6 in 6-PPDQ exposed nematodes. Therefore, our results demonstrated activation of ferroptosis in nematodes exposed to 6-PPDQ at environmentally relevant concentrations, and this ferroptosis activation was related to reproductive toxicity of 6-PPDQ.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Ferroptosis , Reproduction , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Ferroptosis/drug effects , Reproduction/drug effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Phenylenediamines/toxicity , Lipid Peroxidation/drug effects , Glutathione/metabolism
4.
mBio ; 15(5): e0057024, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587425

Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE: Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.


Antifungal Agents , Biofilms , Caenorhabditis elegans , Candida albicans , Candidiasis , Enterococcus faecalis , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Candida albicans/drug effects , Candida albicans/genetics , Biofilms/drug effects , Candidiasis/drug therapy , Candidiasis/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Caenorhabditis elegans/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Disease Models, Animal , Peptides/pharmacology , Peptides/genetics , Peptides/chemistry
5.
Colloids Surf B Biointerfaces ; 238: 113907, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608464

Multifunctional agents with therapeutic and diagnostic capabilities are imperative to the prevention of Alzheimer's disease (AD), which is considered due to abnormal aggregation and deposition of ß-amyloid protein (Aß) as well as oxidative stress. Herein, quercetin (Que)- and p-phenylenediamine (p-PD)-derived red emission carbon dots (CDs) synthesized via a one-step hydrothermal method were designed as a novel theranostic nano-agent for the multi-target treatment of AD. R-CD-75 with an optimized composition exhibited significant inhibition of Aß aggregation and rapid depolymerization of mature Aß fibrils (<4 h) at micromolar concentrations (2 and 5 µg/mL, respectively). Moreover, R-CD-75 potently scavenged reactive oxygen species and showed turned-on red fluorescence imaging of Aß plaques both in vitro and in vivo. In vitro assays proved that R-CD-75 significantly mitigated the Aß-induced cytotoxicity and enhanced the cultured cell viability from 74.9 % to 98.0 %, while in vivo studies demonstrated that R-CD-75 prolonged the lifespan of AD nematodes by over 50 % (from 13 to 20 d). Compared to the precursors Que and p-PD, R-CD-75 inherited some of their structures and functional groups, such as aromatic structures, phenolic hydroxyl and amino groups, which were considered to interact with Aß species through hydrogen bonding, electrostatic interactions, hydrophobic interactions, and π-π stacking, thus contributing to its effectiveness in its theranostic functions. This research has opened a new avenue to the development of potent theranostic agents by designing novel carbon dots.


Alzheimer Disease , Amyloid beta-Peptides , Carbon , Quantum Dots , Quercetin , Theranostic Nanomedicine , Quercetin/chemistry , Quercetin/pharmacology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Carbon/chemistry , Carbon/pharmacology , Quantum Dots/chemistry , Animals , Humans , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Particle Size
6.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613792

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Caenorhabditis elegans , Longevity , Oxidative Stress , Animals , Longevity/drug effects , Longevity/genetics , Oxidative Stress/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Resveratrol/pharmacology , Aging/drug effects , Aging/genetics , Genetic Background , Swimming , Piperazines/pharmacology , Stilbenes/pharmacology
7.
Environ Int ; 186: 108597, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579453

The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 µg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 µg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.


Caenorhabditis elegans , Dopaminergic Neurons , Vehicle Emissions , Animals , Caenorhabditis elegans/drug effects , Dopaminergic Neurons/drug effects , Vehicle Emissions/toxicity , Particulate Matter/toxicity , Animals, Genetically Modified , Glutamic Acid/metabolism , Locomotion/drug effects , Neurodegenerative Diseases/chemically induced , Air Pollutants/toxicity
9.
Environ Int ; 186: 108640, 2024 Apr.
Article En | MEDLINE | ID: mdl-38608385

Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 µg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.


Caenorhabditis elegans , Microplastics , Synaptic Transmission , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Free Radicals , Microplastics/toxicity , Synaptic Transmission/drug effects , Reactive Oxygen Species/metabolism
10.
Chem Biol Drug Des ; 103(4): e14529, 2024 Apr.
Article En | MEDLINE | ID: mdl-38670598

With the increasing aging population, rational design of drugs for Alzheimer's disease (AD) treatment has become an important research area. Based on the multifunctional design strategy, four diosmetin derivatives (1-4) were designed, synthesized, and characterized by 1H NMR, 13C NMR, and MS. Docking study was firstly applied to substantiate the design strategies and then the biological activities including cholinesterase inhibition, metal chelation, antioxidation and ß-amyloid (Aß) aggregation inhibition in vitro were evaluated. The results showed that 1-4 had good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, metal chelation (selective chelation of Cu2+ ions), antioxidation, self-induced, Cu2+-induced, and AChE-induced Aß aggregation inhibition activities, and suitable blood-brain barrier (BBB) permeability. Especially, compound 3 had the strongest inhibitory effect on AChE (10-8 M magnitude) and BuChE (10-7 M magnitude) and showed the best inhibition on AChE-induced Aß aggregation with 66.14% inhibition ratio. Furthermore, compound 3 could also reduce intracellular reactive oxygen species (ROS) levels in Caenorhabditis elegans and had lower cytotoxicity. In summary, 3 might be considered as a potential multifunctional anti-AD ligand.


Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Butyrylcholinesterase , Caenorhabditis elegans , Cholinesterase Inhibitors , Drug Design , Flavonoids , Molecular Docking Simulation , Reactive Oxygen Species , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Ligands , Blood-Brain Barrier/metabolism , Humans , Reactive Oxygen Species/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Structure-Activity Relationship , Protein Aggregates/drug effects
11.
Mar Drugs ; 22(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38667762

Four undescribed sesquiterpenoids, lemneolemnanes A-D (1-4), have been isolated from the marine soft coral Lemnalia sp. The absolute configurations of the stereogenic carbons of 1-4 were determined by single-crystal X-ray crystallographic analysis. Compounds 1 and 2 are epimers at C-3 and have an unusual skeleton with a formyl group on C-6. Compound 3 possesses an uncommonly rearranged carbon skeleton, while 4 has a 6/5/5 tricyclic system. Compound 1 showed significant anti-Alzheimer's disease (AD) activity in a humanized Caenorhabditis elegans AD pathological model.


Anthozoa , Caenorhabditis elegans , Sesquiterpenes , Animals , Anthozoa/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Caenorhabditis elegans/drug effects , Crystallography, X-Ray , Alzheimer Disease/drug therapy , Disease Models, Animal , Humans , Molecular Structure
12.
J Pharm Biomed Anal ; 244: 116126, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38581931

Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.


Caenorhabditis elegans , Indoles , Lipidomics , Metabolome , Metabolomics , Polymers , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Animals , Polymers/metabolism , Indoles/metabolism , Metabolomics/methods , Lipidomics/methods , Metabolome/drug effects , Lipids , Lipid Metabolism/drug effects
13.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38664688

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Caenorhabditis elegans , DNA, Mitochondrial , Mitochondria , Sex Characteristics , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Female , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/drug effects
14.
Sci Total Environ ; 927: 172306, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593884

As the derivatives of p-phenylenediamines (PPDs), PPD quinones (PPDQs) have received increasing attention due to their possible exposure risk. We compared the intestinal toxicity of six PPDQs (6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ and IPPDQ) in Caenorhabditis elegans. In the range of 0.01-10 µg/L, only 77PDQ (10 µg/L) moderately induced the lethality. All the examined PPDQs at 0.01-10 µg/L did not affect intestinal morphology. Different from this, exposure to 6-PPDQ (1-10 µg/L), 77PDQ (0.1-10 µg/L), CPPDQ (1-10 µg/L), DPPDQ (1-10 µg/L), DTPDQ (1-10 µg/L), and IPPDQ (10 µg/L) enhanced intestinal permeability to different degrees. Meanwhile, exposure to 6-PPDQ (0.1-10 µg/L), 77PDQ (0.01-10 µg/L), CPPDQ (0.1-10 µg/L), DPPDQ (0.1-10 µg/L), DTPDQ (1-10 µg/L), and IPPDQ (1-10 µg/L) resulted in intestinal reactive oxygen species (ROS) production and activation of both SOD-3::GFP and GST-4::GFP. In 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ exposed nematodes, the ROS production was strengthened by RNAi of genes (acs-22, erm-1, hmp-2, and pkc-3) governing functional state of intestinal barrier. Additionally, expressions of acs-22, erm-1, hmp-2, and pkc-3 were negatively correlated with intestinal ROS production in nematodes exposed to 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ. Therefore, exposure to different PPDQs differentially induced the intestinal toxicity on nematodes. Our data highlighted potential exposure risk of PPDQs at low concentrations to organisms by inducing intestinal toxicity.


Caenorhabditis elegans , Quinones , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Reactive Oxygen Species/metabolism , Quinones/toxicity , Permeability , Phenylenediamines/toxicity , Intestines/drug effects , Intestines/physiology , Intestinal Mucosa/metabolism , Intestinal Barrier Function
15.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673805

Amphetamines (Amph) are psychostimulants broadly used as physical and cognitive enhancers. However, the long-term effects of prenatal exposure to Amph have been poorly investigated. Here, we show that continuous exposure to Amph during early development induces long-lasting changes in histone methylation at the C. elegans tyrosine hydroxylase (TH) homolog cat-2 and the vesicular monoamine transporter (VMAT) homologue cat-1 genes. These Amph-induced histone modifications are correlated with enhanced expression and function of CAT-2/TH and higher levels of dopamine, but decreased expression of CAT-1/VMAT in adult animals. Moreover, while adult animals pre-exposed to Amph do not show obvious behavioral defects, when challenged with Amph they exhibit Amph hypersensitivity, which is associated with a rapid increase in cat-2/TH mRNA. Because C. elegans has helped reveal neuronal and epigenetic mechanisms that are shared among animals as diverse as roundworms and humans, and because of the evolutionary conservation of the dopaminergic response to psychostimulants, data collected in this study could help us to identify the mechanisms through which Amph induces long-lasting physiological and behavioral changes in mammals.


Amphetamine , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Embryonic Development , Tyrosine 3-Monooxygenase , Vesicular Monoamine Transport Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Amphetamine/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Embryonic Development/drug effects , Embryonic Development/genetics , Gene Expression Regulation, Developmental/drug effects , Dopamine/metabolism , Epigenesis, Genetic/drug effects
16.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 164-173, 2024.
Article En | MEDLINE | ID: mdl-38684387

Bitterness and astringency are the aversive tastes in mammals. In humans, aversion to bitterness and astringency may be reduced depending on the eating experience. However, the cellular and molecular mechanisms underlying plasticity in preference to bitter and astringent tastants remain unknown. This study aimed to investigate the preference plasticity to bitter and astringent tea polyphenols, including catechins and tannic acids, in the model animal Caenorhabditis elegans. C. elegans showed avoidance behavior against epigallocatechin gallate (EGCG), tannic acid, and theaflavin. However, they displayed diminishing avoidance against EGCG depending on their EGCG-feeding regime at larval stages. Additionally, the behavioral plasticity in avoiding EGCG required the transcription factor DAF-16/FOXO. Isoform-specific deletion mutant analysis and cell-specific rescue analysis revealed that the function of daf-16 isoform b in AIY interneurons is necessary for experience-dependent behavioral plasticity to EGCG.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Catechin , Forkhead Transcription Factors , Interneurons , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors/metabolism , Interneurons/drug effects , Interneurons/metabolism , Avoidance Learning/drug effects , Biflavonoids/pharmacology , Taste/drug effects , Tea/chemistry , Behavior, Animal/drug effects , Larva/drug effects
17.
ACS Nano ; 18(17): 11323-11334, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38635335

Expounding bioaccumulation pathways of nanoplastics in organisms is a prerequisite for assessing their ecological risks in the context of global plastic pollution. Invertebrate uptake preference toward nanoplastics is a key initial step of nanoplastic food chain transport that controls their global biosafety, while the biological regulatory mechanism remains unclear. Here, we reveal a preferential uptake mechanism involving active avoidance of nanoplastics by Caenorhabditis elegans and demonstrate the relationship between the uptake preference and nanoplastic characteristics. Nanoplastics with 100 nm in size or positive surface charges induce stronger avoidance due to higher toxicity, causing lower accumulation in nematodes, compared to the 500 nm-sized or negatively charged nanoplastics, respectively. Further evidence showed that nematodes did not actively ingest any types of nanoplastics, while different nanoplastics induced defense responses in a toxicity-dependent manner and distinctly stimulated the avoidance behavior of nematodes (ranged from 15.8 to 68.7%). Transcriptomics and validations using mutants confirmed that the insulin/IGF signaling (IIS) pathway is essential for the selective avoidance of nanoplastics. Specifically, the activation of DAF-16 promoted the IIS pathway-mediated defense against nanoplastics and stimulated the avoidance behavior, increasing the survival chances of nematodes. Considering the genetical universality of this defense response among invertebrates, such an uptake preference toward certain nanoplastics could lead to cascaded risks in the ecosystem.


Caenorhabditis elegans , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Avoidance Learning/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Nanoparticles/chemistry , Plastics/chemistry , Particle Size , Behavior, Animal/drug effects , Signal Transduction/drug effects , Microplastics/toxicity
18.
Int J Biol Macromol ; 267(Pt 2): 131634, 2024 May.
Article En | MEDLINE | ID: mdl-38636747

Oxidative damage is an important cause of aging. The antioxidant and anti-aging activities of Longan polysaccharides, especially purified Longan polysaccharides, have not been thoroughly investigated. Therefore, this study aimed to investigate the antioxidant and anti-aging activities and mechanisms of crude polysaccharides and purified polysaccharides from Longan. A purified acidic Longan polysaccharide LP-A was separated from Longan crude polysaccharide LP. Subsequently, its structural characterization, anti-aging activity and mechanism were studied. The results showed that LP-A was an acidic heteropolysaccharide with an average molecular weight (Mw) of 4.606 × 104 Da which was composed of nine monosaccharides. The scavenging rate of ABTS free radical in vitro reached 99 %. In the nematode life experiment, 0.3 mg/mL LP group and LP-A group could prolong the average lifespan of nematodes by 9.31 % and 25.80 %, respectively. Under oxidative stress stimulation, LP-A group could prolong the survival time of nematodes by 69.57 %. In terms of mechanism, Longan polysaccharide can regulate insulin / insulin-like growth factor (IIS) signaling pathway, increase the activity of antioxidant enzymes, reduce lipid peroxidation, enhance the body's resistance to stress damage, and effectively prolong the lifespan of nematodes. In conclusion, LP-A has better anti-aging activity than crude polysaccharide LP, which has great potential for developing as an anti-aging drug.


Aging , Antioxidants , Caenorhabditis elegans , Oxidative Stress , Polysaccharides , Animals , Caenorhabditis elegans/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Molecular Weight , Monosaccharides/analysis , Longevity/drug effects
19.
PLoS One ; 19(4): e0292415, 2024.
Article En | MEDLINE | ID: mdl-38669260

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Adenosine Triphosphate , Caenorhabditis elegans , Oxidation-Reduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Adenosine Triphosphate/metabolism , Optical Imaging/methods , Paralysis/chemically induced , Paralysis/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Rotenone/pharmacology , Anesthetics/pharmacology
20.
J Agric Food Chem ; 72(17): 9746-9754, 2024 May 01.
Article En | MEDLINE | ID: mdl-38602331

The latex of Euphorbia peplus and its major component 20-deoxyingenol-3-angelate (DI3A) displayed significant nematicidal activity against Caenorhabditis elegans and Panagrellus redivivus. DI3A treatment inhibited the growth and development of nematodes and caused significantly negative effects on locomotion behavior, reproduction, and accumulation of reactive oxygen species. Transcriptome analysis indicated that differential expression genes in DI3A-treated C. elegans were mainly associated with the metabolism, growth, and development process, which were further confirmed by RT-qPCR experiments. The expression level of TPA-1 gene encoding a protein kinase C isotype was obviously upregulated by DI3A treatment, and knockdown of TPA-1 by RNAi technology in the nematode could relieve the growth-inhibitory effect of DI3A. Metabolic analysis indicated that DI3A was hardly metabolized by C. elegans, but a glycosylated indole derivative was specifically accumulated likely due to the activation of detoxification. Overall, our findings suggested that DI3A from E. peplus latex exerted a potent nematicidal effect through the gene TPA-1, which provides a potential target for the control of nematodes and also suggests the potential application value of E. peplus latex and DI3A as botanical nematicides.


Antinematodal Agents , Caenorhabditis elegans , Euphorbia , Latex , Protein Kinase C , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/growth & development , Latex/chemistry , Latex/metabolism , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Euphorbia/chemistry , Protein Kinase C/metabolism , Protein Kinase C/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry
...